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Abstract: Stroke is a high-incidence disease with high disability and mortality rates. It is a
serious public health problem worldwide. Shortened onset-to-image time is very important
for the diagnosis and treatment of stroke. Functional near-infrared spectroscopy (fNIRS) is a
noninvasive monitoring tool with real-time, noninvasive, and convenient features. In this study,
we propose an automatic classification framework based on cerebral oxygen saturation signals to
identify patients with hemorrhagic stroke, patients with ischemic stroke, and normal subjects.
The reflected fNIRS signals were used to detect the cerebral oxygen saturation and the relative
value of oxygen and deoxyhemoglobin concentrations of the left and right frontal lobes. The
wavelet time-frequency analysis-based features from these signals were extracted. Such features
were used to analyze the differences in cerebral oxygen saturation signals among different types
of stroke patients and healthy humans and were selected to train the machine learning models.
Furthermore, an important analysis of the features was performed. The accuracy of the models
trained was greater than 85%, and the accuracy of the models after data augmentation was greater
than 90%, which is of great significance in distinguishing patients with hemorrhagic stroke or
ischemic stroke. This framework has the potential to shorten the onset-to-diagnosis time of
stroke.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Stroke is a clinical emergency caused by cerebral infarction or hemorrhage caused by blockage or
rupture of blood vessels [1]. Worldwide, stroke is the second most common cause of death and
the third most common cause of disability [2]. In 2020, the global death toll of cerebrovascular
diseases was 7.08 million (including 3.48 million deaths from ischemic stroke, 3.25 million deaths
from intracerebral hemorrhage (ICH), and 0.35 million deaths from subarachnoid hemorrhage)
[3]. Reducing the burden of stroke requires intervention across the health system from primary
prevention through diagnosis, acute treatment, rehabilitation and secondary prevention [4].
Timely diagnosis and treatment can save lives and prevent severe disabilities [5].

The acute management of stroke patients requires a fast and efficient screening imaging
modality. Computed tomography (CT) is the most widely used diagnostic tool for stroke because
of its availability and rapid acquisition time [6]. The imbalance in the distribution of specialized
stroke medical resources between urban and rural areas has led to a higher burden of stroke
in rural areas than in urban areas [7]. The onset-to-imaging time of CT was 107 minutes
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and the onset-to-angiography time was 213 minutes in a study from France [6]. However, the
onset-to-door time might be more than 24 hours in some rural areas [5]. For rural areas without
equipment such as CT or for patients who cannot reach the emergency room in a short time,
portable equipment might shorten the diagnosis time of stroke, hence saving lives and reducing
disabilities caused by stroke. Even in urban areas, portable screening equipment in the ambulance
could save onset-to-needle time by sending the patient directly to the proper hospital [8].

Functional near infrared spectroscopy (fNIRS) provides simple, continuous, real-time and
noninvasive brain monitoring. Portable fNIRS equipment has been used in stroke studies [9–17],
with some limitations [18]. To address the limitations of detection depth and obtain more
physiological information from the signal, our previous studies have found that spontaneous
low-frequency oscillations (LFOs) of cerebral oxygenation signals by fNIRS showed significant
differences between cerebral infarction and nonstroke patients [19]. Spontaneous LFOs could
reflect the hemodynamic changes of whole cerebral blood vessels, which are not restricted to the
detection area. Other studies have also confirmed this phenomenon [20]. LFOs in functional
imaging data have gained increased interest in the study of disease caused cognitive decline [21],
cerebral autoregulation disorder [22], headache [23], the covert consciousness in neurocritical
patients [24], as well as in functional study of normal brain [25–27]. This study proposes a new
clinical usage of LFOs based on the absolute value of parameter obtained from the spatially
resolved spectroscopy algorithm. Machine learning techniques have been used to analyze the
association and rank the importance of the risk factors for stroke [28]. The most popular machine
learning model applied for stroke risk prediction is the support vector machine (SVM) [18].
Hence, to further analyze the characteristics of patients with hemorrhagic stroke, and ischemic
stroke and normal individuals, we conducted this study. Here, machine learning models based
on spontaneous LFO signals were used to help identify the characteristics of different types of
strokes.

2. Methods

2.1. Subjects

The study selected 113 patients with acute cerebral hemorrhage or cerebral infarction from the
emergency department of Beijing Tiantan Hospital affiliated with Capital Medical University and
the Department of Neurosurgery, the fifth medical center of PLA General Hospital, and there
were also 64 healthy control group participants. The data were collected within two weeks after
the onset of stroke. After excluding patients who were older than 80 or younger than 30, 40
patients with cerebral hemorrhage, 40 patients with cerebral infarction and 40 healthy subjects
were enrolled. The corresponding quantity for each category is shown in Table 1. This study was
approved by the Fifth Medical Center of the PLA General Hospital Research Ethics Committee
(No. KY-2022-9-69-1).

Table 1. The data scale and categories

Categories Number of participants Quantity used

Control 64 40

Hemorrhagic stroke 51 40

Ischemic stroke 62 40

2.2. Near infrared signal measurement

The EGOS-600A (EnginMed, Co., Ltd. Suzhou, China) [29–35] is a CW (continuous wave)
recording system with four channels. Each channel is connected to a reflective probe. Each probe
has 1 source and 2 detectors, with source-detector distances of 3 cm and 4 cm. The probe’s light
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source has three wavelengths (760 nm, 810 nm, and 840 nm). The spatially resolved spectroscopy
(SRS) algorithm [35] was used to calculate tissue oxygen saturation (TOI, also known as regional
cerebral oxygen saturation and local oxygen saturation). The modified Lambert Beer law was
used to obtain the relative values of oxygen and deoxyhemoglobin concentrations (HbO, Hb)
through the raw fNIRS signal.

For this study, two channels were used to record the cortical blood oxygen changes from the
subjects enrolled at a sampling rate of 10 Hz. The two probes were fixed on the left and right
sides of the forehead (as shown in Fig. 1). According to the international 10–20 electrode system,
two pairs of light detectors were placed at positions Fp1-F7 and Fp2-F8, and corresponding light
sources (the red blocks on the probe in Fig. 1) were placed at F7 and F8, 3 and 4 cm from the two
detectors (the blue blocks on the probe in Fig. 1), respectively.

Fig. 1. Research flowchart. The figure shows the wavelet transform for calculating the
cerebral oxygen signals of each side and the wavelet phase coherence between the left and
right cerebral oxygen signals of each subject. The frequency domain signals are obtained
by averaging the two-dimensional time-frequency results in the time domain, and then the
signals of different frequency bands are extracted from the frequency signals to obtain the
characteristics. (6 features extracted from each of the 9 frequency signals, 54 for each
subject).

None of the subjects had smoked, drank or taken drugs within 24 hours before the experiment.
During the experiment the subjects closed their eyes and remained still. The room was dark,
and the room temperature was 25 °C. The left and right frontal lobe oxygenation signals were
monitored continuously for 20 minutes. Figure 1 shows the whole experimental process.

2.3. Time frequency feature analysis

For the time-domain signal we obtained, we use the wavelet transform method to conduct
time-frequency transformation and analyze the signal in the frequency domain. MATLAB 2018
(MathWorks, MA, USA) was used to conduct time-frequency analysis on each parameter. A
one-dimensional frequency domain signal curve was obtained by averaging the two-dimensional
wavelet amplitude matrix along the time dimension. Each frequency signal was divided into
five physiological frequency bands according to the physiological cause of the oscillation. As
shown in Fig. 1, the five bands are represented by Roman numerals I to V, which denote
cardiac activity (0.4000 to 2.0000 Hz), respiratory activity (0.1500-0.4000 Hz), myogenic activity
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(0.0600-0.1500 Hz), neurogenic activity (0.0200-0.0600 Hz) and endothelial metabolic activity
(0.0095 to 0.0200 Hz) [19,36–48], respectively. The average value of each frequency band was
obtained as the feature parameters of the frequency band. The average value of each time series
signal was also extracted as a feature. Eighteen features of unilateral cerebral vessels of a subject
were extracted.

Based on the wavelet transform, wavelet phase coherence (WPCO) can reveal the possible
relationship between two signals by evaluating their instantaneous phase matching. The WPCO
value is calculated according to the frequency domain amplitude of the instantaneous phase
difference, and the average value is calculated. Its value ranges from 0 to 1, and it can be used to
evaluate the phase coherence between two signals at the same frequency and time. In a previous
study [19], WPCO analysis was used to explore the relationship with blood oxygen saturation
within a specific frequency range and to research the connectivity of left and right brain functions.

The phase synchronization between left and right prefrontal oscillations is likely related
to cognitive function. In this study, the WPCO method was also used to evaluate the phase
coherence of cerebral oxygen signals in the left and right prefrontal tissues of patients with
cerebral hemorrhage, patients with cerebral infarction and the control group at rest. By reflecting
the synchronization between the instantaneous phases of signals measured in the continuous
process of the left and right frontal brain regions, this synchronization information can be used to
evaluate the functional relationship of different cerebral cortex regions. This evaluation provides
a new understanding of the dynamic regulation of brain function from the perspective of phase.
WPCO is calculated for each pair of time series signals. In addition, the frequency sequences
obtained from each of the five frequency bands were averaged, and each WPCO signal was
averaged in the entire frequency domain. Therefore, 18 features were extracted based on the
connection between the two cerebral hemispheres. The above features are represented by the
symbols in Table 2, where “cm” represents the calculation method and “L” and “R” represent the
WT and the average value in the time domain of the left or right frontal lobe signal, respectively.
“w” represents WPCO of the left and right frontal lobe signals. “Par” indicates the parameter:
TOI, HbO or Hb. “Fb” indicates the frequency band or frequency interval in which the frequency
signal is averaged, as shown in Table 2. “m” represents the average value of the time series signal
for WT and the average value of the frequency signal in the whole frequency domain for WPCO.
For example, “RTOI_II” represents the II frequency band feature of the right frontal lobe TOI
signal.

Table 2. Feature symbols and meanings of each part

cmPar_fb

cm Par fb

L, R, w TOI, HbO, Hb V, IV, III, II, I, m

One-way ANOVA and the t test were used to evaluate the significant differences in features
among patients with cerebral hemorrhage, patients with cerebral infarction and controls. Table 3
shows the statistical results of the features of patients with cerebral hemorrhage, patients with
cerebral infarction and healthy controls (◆ P< 0.05).

2.4. Difference analysis of cerebral oxygen signals in patients with cerebral hemor-
rhage and cerebral infarction based on machine learning

For each parameter (TOI, HbO, or Hb), we trained and built a machine learning model for blood
oxygen parameters based on 18 features, including the time series average values of the left and
right prefrontal lobes and 10 frequency domain features of the corresponding parameters. For
each subject, WPCO analysis was performed on the bilateral frontal lobe time series of each
parameter. After averaging the time-frequency amplitude matrix of WPCO analysis at the time
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Table 3. Feature differences between these groups (◆ P< 0.05)

the difference
between two

groups

Frequency
interval

V IV III II I
Mean

0.0095-0.02 0.02-0.06 0.06-0.15 0.15-0.40 0.40-2.00

hemorrhagic
and control

RTOI 0.244 0.190 0.419 0.003 ◆ 0.001 ◆ 0.202

LTOI 0.231 0.452 0.372 0.002 ◆ 0.001 ◆ 0.011 ◆
RHb 0.254 0.024 ◆ 0.138 0.002 ◆ 0.000 ◆ 0.014 ◆
LHb 0.100 0.146 0.193 0.028 ◆ 0.001 ◆ 0.263

RHbO 0.012 ◆ 0.018 ◆ 0.287 0.022 ◆ 0.157 0.284

LHbO 0.001 ◆ 0.059 0.378 0.035 ◆ 0.274 0.214

wTOI 0.001 ◆ 0.000 ◆ 0.000 ◆ 0.000 ◆ 0.007 ◆ 0.006 ◆
wHb 0.132 0.192 0.165 0.215 0.279 0.378

wHbO 0.006 ◆ 0.001 ◆ 0.013 ◆ 0.010 ◆ 0.000 ◆ 0.000 ◆

ischemic and
control

RTOI 0.479 0.006 ◆ 0.000 ◆ 0.000 ◆ 0.103 0.000 ◆
LTOI 0.141 0.006 ◆ 0.000 ◆ 0.000 ◆ 0.434 0.000 ◆
RHb 0.363 0.060 0.000 ◆ 0.010 ◆ 0.108 0.288

LHb 0.493 0.472 0.000 ◆ 0.071 0.333 0.202

RHbO 0.270 0.026 ◆ 0.011 ◆ 0.050 ◆ 0.016 ◆ 0.194

LHbO 0.117 0.136 0.016 ◆ 0.060 0.041 ◆ 0.328

wTOI 0.335 0.135 0.000 ◆ 0.000 ◆ 0.482 0.004 ◆
wHb 0.178 0.229 0.135 0.109 0.002 ◆ 0.080

wHbO 0.116 0.444 0.395 0.378 0.002 ◆ 0.055

hemorrhagic
and ischemic

RTOI 0.233 0.093 0.000 ◆ 0.001 ◆ 0.001 ◆ 0.000 ◆
LTOI 0.096 0.022 ◆ 0.000 ◆ 0.000 ◆ 0.001 ◆ 0.000 ◆
RHb 0.397 0.360 0.001 ◆ 0.000 ◆ 0.001 ◆ 0.130

LHb 0.133 0.208 0.013 ◆ 0.001 ◆ 0.000 ◆ 0.328

RHbO 0.104 0.432 0.025 ◆ 0.002 ◆ 0.004 ◆ 0.412

LHbO 0.039 ◆ 0.267 0.055 0.004 ◆ 0.017 ◆ 0.303

wTOI 0.002 ◆ 0.000 ◆ 0.036 ◆ 0.308 0.010 ◆ 0.195

wHb 0.019 ◆ 0.056 0.492 0.010 ◆ 0.000 ◆ 0.200

wHbO 0.006 ◆ 0.000 ◆ 0.008 ◆ 0.006 ◆ 0.398 0.000 ◆

domain, a frequency sequence was obtained, which is divided into five bands that are the same as
WT signals. Six features were extracted, that is, the average frequency of each frequency band
and the average of the whole frequency sequence in five frequency bands. Hence, 18 features
were extracted from each parameter to train the classification model. The process of feature
screening, model training, and feature analysis is shown in Fig. 2.

Data preprocessing includes standardization and elimination of singular values. Standardization
refers to scaling data to a specific small interval. After time-frequency domain analysis of blood
oxygen parameters, the order of magnitude of frequency features between each physiological
frequency band is completely different. If the original value is directly used for analysis, indicators
with a higher order of magnitude will have a significant impact on the construction of the model,
and indicators with a lower order of magnitude will be ignored. Here, we standardized the data
in the training sample set of the machine learning model to ensure that the models for diagnosing
cerebral hemorrhage and cerebral infarction have better classification accuracy and generalization
performance so that data with different features have similar scales.
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Fig. 2. Feature analysis and classification. First, the differences were analyzed between two
groups of three subjects’ features, and then, the features with significant differences were
selected to train the machine learning classification model. Finally, we evaluated the trained
model and analyzed the importance of features.

Based on the average values and standard deviations of features extracted from all subjects, Z
score standardization was used to standardize each feature extracted from time-frequency analysis
(Eq. (1)):

x = x̄/std(x) (1)

where x, x̄ and std (x) represent one eigenvalue, standardized eigenvalue and standard deviation
of x extracted from all subjects, respectively. This method is applicable to cases in which the
maximum and minimum values of data are unknown, or there is a singular value. In the next
study, the experimental data of the new sample will be processed according to the existing
standard deviation. The feature values obtained before and after standardization are in a similar
range. The data quality improved without changing the numerical ordering. The tail percentile
removal method was used to eliminate the singular value, with 97.5% and 2.5% as the upper
and lower limit critical values, respectively, to retain the maximum amount of information in the
sample and ensure the classification result of the machine learning model.

The model was constructed with Dataspell software, and the Python language version is 3.8.
SVM, RF and XGBoost were selected as three machine learning models, which are provided
by the scikit learning package in the Python environment. The method of cross validation was
used to partition the dataset, avoiding the impact of the randomness of a single sample dataset
partition on the model training error and generalization error evaluation, which is helpful to select
a general robust parameter combination. The grid search strategy and traversal method were used
to determine the optimal model parameters. The initial model parameters were identified by the
convex optimization principle. According to the model performance and parameter adjustment
results in the previous step, we gradually reduced the upper and lower limit range and step size
until the approximate optimal model parameters were determined. The process of model training
involved importing sample data, using the tenfold cross-validation as the training method, and
determining the optimal parameters based on grid search.

The features of patients with cerebral hemorrhage, patients with cerebral infarction, and healthy
controls were studied in pairs for classification model training and feature analysis. The three
pairs were cerebral hemorrhage and healthy controls, cerebral infarction and healthy controls,
and cerebral hemorrhage and cerebral infarction. Then, the features of cerebral hemorrhage
patients, cerebral infarction patients, and healthy controls were used to train a three-classification
model, the features of which were analyzed.
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Accuracy, precision, recall rate, and F1 score (Eq. (2)) were used to evaluate the performance
of the model in this study. They were calculated based on the confusion matrix:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN
(2)

F1 =
2TP

2TP + FP + FN
where TP, TN, FP and FN represent the number of correctly classified positive samples, correctly
classified negative samples, wrongly classified negative samples and wrongly classified positive
samples, respectively. Accuracy is the percentage of correctly classified samples in the total
samples and is the most basic evaluation index in classification problems. It measures the
performance of the model to a certain extent. When the proportion of sample categories is
unbalanced, or there are extremely biased samples, the accuracy cannot be objectively evaluated.
Precision, also known as the precision ratio, refers to the proportion of positive samples among all
positive samples, and it measures the reliability of the model when classifying positive samples.
The recall rate refers to the proportion of positive samples correctly classified as positive, and
it measures the overall ability of the model to classify positive samples. Receiver operating
characteristic (ROC) curve analysis reliably reflects the generalization performance of the model.
Finally, we compare the reliability of the model by using Leave-One-Out cross-validation
(LOOCV) with the tenfold cross-validation.

2.5. Data augmentation

Due to the relatively small amount of data, to strengthen the robustness of the training model,
the 20-minute continuous signal (NDA) obtained from each subject was divided into four
5-minute-segment signals (DA); hence, the data were augmented four times. The same features
were chosen for classification model training and feature importance analysis.

3. Results

3.1. Two classification results

We analyzed the difference in brain oxygen saturation signals between patients with cerebral
hemorrhage and normal people. Based on the t test results in Table 3, we selected features
with differences less than 0.05 for model training. We trained the classifier using individual
TOI, Hb, and HbO features, and then combined the three series of features to train the classifier.
Finally, we added the features calculated through WPCO to train the classifier and compared
the classification results. The selected features are highlighted in bold in Table 3. We trained
SVM, RF, and XGBoost classifiers separately. To avoid result redundancy, we demonstrate the
best SVM classification results in Figs. 3(a-f). The classification results of patients with cerebral
ischemia and the normal control group were also the best with the SVM classifier, as shown in
Figs. 3(g-l). The classification results of hemorrhagic stroke and ischemic stroke were also the
best for SVM classifiers, as shown in Figs. 3(m-r). Figure 4(a) shows the ROC curves of the three
classification models before and after data augmentation. Figure 4(b) shows the ROC curves
of the three classification models before and after data expansion. Figure 4(c) shows the ROC
curves of the three classification models before and after data expansion.
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Fig. 3. The comparison of various evaluation parameters corresponding to different data
combinations of the SVM model. The first column of the subfigures (a-f) corresponds to
hemorrhagic stroke and controls, the second column corresponds (g-l) to ischemic stroke and
controls, and the last column (m-r) corresponds to hemorrhagic stroke or ischemic stroke.
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Fig. 4. ROC curve analysis: (a) ROC curve before and after data augmentation of three
classifiers for hemorrhagic stroke and control group; (b) the ROC curves of three classifiers
in the ischemic stroke and control group before and after data enhancement; (c) the ROC
curves of the three classifiers for hemorrhagic stroke and ischemic stroke before and after
data enhancement; (d)-(f) the ROC curves before and after data augmentation for three
classifiers corresponding to hemorrhagic stroke, ischemic stroke, and the control group.

Fig. 5. Comparison of results before (NDA) and after data augmentation (DA). (a) shows
the evaluation results of the SVM classifier before and after data expansion for hemorrhagic
stroke and the normal control group; (b) shows the evaluation results of the SVM classifier
before and after data expansion for ischemic stroke and normal control group; (c) shows the
evaluation results of the SVM classifier before and after data expansion for hemorrhagic
stroke and ischemic stroke; (d) shows the evaluation results of the SVM classifiers before
and after data expansion for hemorrhagic stroke, ischemic stroke, and the normal control
group.(* P< 0.05)



Research Article Vol. 14, No. 8 / 1 Aug 2023 / Biomedical Optics Express 4255

Fig. 6. Feature importance. (a) and (b) show the top ten feature rankings of the RF and
XGBoost classification models for hemorrhagic stroke, respectively, compared to the control
group; (c) and (d) show the top ten feature rankings of the RF and XGBoost classification
models for ischemic stroke, respectively, and the control groups; (e) and (f) show the top ten
feature rankings of the RF and XGBoost classification models for hemorrhagic stroke and
ischemic stroke, respectively; (g) and (h) show the top ten feature rankings of the RF and
XGBoost classification models for hemorrhagic stroke and ischemic stroke, respectively,
and the control groups.

3.2. Three-class classification results

When training a three-class classifier, all the features used in the previous section are selected.
The classification results of the three classifiers were not significantly different, but the SVM

classifier still performed better. We show the classification results in Fig. 5(d) in the next section.
Figures 4(d-f) shows the ROC curves of the SVM, RF, and XGBoost classifiers, respectively.
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3.3. Data augmentation results

The training results of the classifier before data augmentation (NDA) and after data augmentation
(DA) are shown in Fig. 5. Figure 5(a) shows the classification results of hemorrhagic stroke and
the control group, Fig. 5(b) shows the classification results of ischemic stroke and the control
group, Fig. 5(c) shows the classification results of hemorrhagic stroke and ischemic stroke,
and Fig. 5(d) shows the classification results of hemorrhagic stroke, ischemic stroke and the
control group. The results of SVM, RF, and XGBoost classifiers are similar, Fig. 5 shows all
the results of the SVM classifier. The LOOCV result of the binary-classification model is 90%,
which is the same as the result of cross validation with 10-fold CV. The LOOCV result of the
three-classification model is 90%, while the result of 10-fold CV is 89%.

3.4. Result of feature importance analysis

We used three classifiers – SVM, RF, and XGboost – to train the classification model. Among
them, SVM had the best classification performance, but the three classifiers had significant
differences in classification performance. Because the classifier training in this experiment was
implemented using the scikit-learn library in the Python language and the SVM classifier used the
Gaussian kernel function, which does not support feature importance, we used RF and XGBoost
classifiers for feature importance analysis. The ranking results of feature importance are shown
in Fig. 6, and Figs. 6(a) and (b) correspond to the feature importance analysis results of the
RF and XGBoost classifiers in the classification of hemorrhagic stroke and the control group,
respectively; Figs. 6(c) and (d) correspond to the feature importance analysis results of the RF and
XGBoost classifiers in the classification of ischemic stroke and the control group, respectively;
Figs. 6(e) and (f) correspond to the feature importance analysis results of the RF and XGBoost
classifiers in the classification of hemorrhagic stroke and ischemic stroke, respectively; and
Figs. 6(g) and (h) correspond to the feature importance analysis results of the RF and XGBoost
classifiers in the classification of hemorrhagic stroke, ischemic stroke, and the normal control
group, respectively. Each classifier is trained with more than forty features. Figure 6 shows the
top ten features in importance ranking for each classifier. We can see that, in the RF classifiers,
the importance of each feature is relatively balanced. However, in XGboost classifiers, there is a
significant difference in feature importance. In summary, TOI_ II and TOI_ II contribute the
most to the classifier.

4. Discussion

We divided the cerebral hemorrhage, cerebral infarction and healthy control groups into pairs to
train the classification model and analyzed the classification results. According to the model
evaluation results, and from the perspective of different types of signal parameters, the main
difference among the groups was the TOI signal. For each group, after adding the cross-correlation
signal features of the left and right frontal lobes, all evaluation indicators of the model improved,
indicating that the left and right frontal lobe connectivity differed among the groups, indicating
that hemorrhage or infarction might occur on one side. By ranking the importance of features, it
was found, that between the cerebral hemorrhage group and the healthy control group, the most
significant feature was the cross-correlation feature of TOI in the left and right frontal lobes,
among which the feature corresponded to myogenic activity, respiratory activity and cardiac
activity, involving the difference between cardiac pumping and respiratory activity [38]. The
most important representation shows heart activity. Between the cerebral infarction group and the
healthy control group, the most important feature was the TOI signal in the third frequency band.
This difference mainly corresponds to the myogenic activity in physiological activities, specifically
reflected in the tense contraction of vascular smooth muscle. However, most cases of cerebral
infarction are caused by cerebral vascular atherosclerosis, in line with this fact [38]. Between the
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cerebral hemorrhage group and the cerebral infarction group, the feature importance of the TOI
signal in the second frequency band was the largest, corresponding to respiratory activity [38]
and indicating that the respiratory activities of patients with cerebral hemorrhage and patients
with cerebral infarction are significantly different. Finally, we constructed a three-classification
model, and the accuracy of the model results was greater than 85%, with effective reference
significance for clinical practice.

The classification model of patients with cerebral hemorrhage, patients with cerebral infarction
and healthy humans built by us has an accuracy rate of 89% (three-classification model) after data
augmentation. The model has the advantages of convenience, immediacy and high accuracy. Its
program can be embedded in small equipment to facilitate carrying for use in limited conditions.
In case of emergencies, it is only necessary to collect a 5-min cerebral oxygen signal of a
patient to obtain the classification results in a few seconds, providing doctors with important
guidance information in a timely manner, which is of great significance for patients’ diagnosis
and further timely and effective treatment. The minimum accuracy rate of the model was greater
than 85%, and the accuracy rate of the model trained after data augmentation was greater than
90% (among in binary-classification model). For example, in the field of signal processing,
especially in enhancing classification data from EEG signals, researchers have reported similar
improvements in classification accuracy through data augmentation. [47] The accuracy is at
a high level compared with that from similar research [48,28]. It has high reliability but has
some room for improvement. The results show that this small-volume detection instrument can
also make reliable diagnoses for patients with cerebral hemorrhage and cerebral infarction using
near-infrared spectroscopy technique. Because of its simple operation and portability, it is of
great significance in the screening for stroke diseases in a large population and for improving the
diagnosis of cerebral hemorrhage symptoms using brain CT in most current diagnostic models.
This automatic classification framework shows the potential to shorten the diagnosis time before
determining the treatment mode of patients [49], which is of great significance for improving the
treatment effects of patients and reducing the degree of sequelae in patients.

We utilized the tenfold cross-validation method, which inherently evaluates the model’s
performance on independent subsets of the data. The dataset was randomly partitioned into
ten equal parts, and the model was trained and tested ten times, each time using a different
partition as the validation set, while the remaining nine partitions served as the training set.
This approach ensures that the model is evaluated based on diverse and independent subsets
of the data, providing a rigorous assessment of its generalizability and performance. Although
the tenfold cross-validation method ensures robustness to some extent, it is important to note
that the performance of the model heavily relies on the quality and representativeness of the
training data. If the training dataset is biased, incomplete, or insufficient in capturing the true
variations in clinical cases, the model’s reliability could be compromised. Additionally, the
model’s performance might vary across different populations or settings, which can further
impact its generalizability and reliability in practical applications. Therefore, further research
and refinement are necessary to address these limitations and enhance the model’s applicability
and accuracy in real-world clinical settings.

In our study, we have addressed some limitations of fNIRS: 1) the spatially resolved spec-
troscopy algorithm was used to calculate the absolute value of tissue oxygen saturation without
contamination from the scalp; 2) spontaneous LFO reflects the hemodynamic changes of whole
cerebral blood vessels, which is not restricted to the detection area or the shallow depth of
the brain; and 3) with the help of machine learning, it is possible to find a determined way to
recognize hemorrhagic stroke and ischemic stroke. It is of great significance to recognize stroke
in time with low cost in a readily available manner. Based on existing data we verified our method
in stroke recognition. In future studies, more subjects will be included to build a more robust
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model. With sufficient data, it is possible to introduce methods such as deep learning to improve
the accuracy and performance of the model.

5. Conclusion

In this study, a recognition framework for cerebral stroke is proposed based on feature analysis
and machine learning using fNIRS signals. Three machine learning methods were established
to classify patients with cerebral hemorrhage, patients with cerebral infarction, and healthy
controls. The importance of important features in classification was evaluated. The reasons
for the significant differences among the groups were analyzed. The features extracted from
TOI parameters contribute the most importance to the classification of patients with cerebral
hemorrhage and cerebral infarction. Effective classification results based on the signals obtained
from short-term sampling show that we have developed a potential solution for noninvasive
and quick identification of cerebrovascular conditions in patients with cerebral hemorrhage and
cerebral infarction.
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